AOC3 Human

Amine Oxidase Copper Containing 3 Human Recombinant

AOC3 Human produced in Sf9 Baculovirus cells is a single, glycosylated polypeptide chain containing 746 amino acids (27-763 aa) and having a molecular mass of 82.8kDa.
AOC3 is fused to a 9 amino acid His tag at C-terminus and purified by proprietary chromatographic techniques.

Shipped with Ice Packs
Cat. No.
BT18104
Source
Sf9, Baculovirus cells.
Appearance
Sterile Filtered colorless solution.

CPOX Human

Coproporphyrinogen Oxidase Human Recombinant

CPOX Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 367 amino acids (111-454) and having a molecular mass of 41.6kDa. CPOX is fused to a 23 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18177
Source
E.coli.
Appearance
Sterile Filtered colorless solution.

DAAO Human

D-Amino Acid Oxidase Human Recombinant

DAAO Human Recombinant fused with a 20 amino acid His tag at N-terminus produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 367 amino acids (1-347 a.a.) and having a molecular mass of 41.6kDa.
The DAAO is purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18245
Source
Escherichia Coli.
Appearance
Sterile Filtered colorless solution.

DAAO Human, Active

D-Amino Acid Oxidase Human Recombinant, BioActive

DAAO Human Recombinant produced in E.Coli is a single, non-glycosylated polypeptide chain containing 367 amino acids (1-347) and having a molecular mass of 41.6 kDa. DAAO Humanis fused to a 20 amino acid His-Tag at N-terminus and purified by proprietary chromatographic techniques.

Shipped with Ice Packs
Cat. No.
BT18321
Source
Escherichia Coli.
Appearance
Sterile Filtered clear solution.

DMGO

Dimethylglycine Oxidase Recombinant

Dimethylglycine oxidase Recombinant originated from Arthrobacter globifomis fused to His Tag at N-terminal produced in E.Coli is a single, non-glycosylated, polypeptide chain containing 850 amino acids and having a molecular mass of 92.1 kDa.
The DMGO is purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18410
Source
Escherichia Coli.
Appearance
Sterile filtered liquid formulation 1 mg/ml.

GPX1 Human

Glutathione Peroxidase 1 Human Recombinant

GPX1 Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 223 amino acids (1-203) and having a molecular mass of 24.2kDa.
GPX1 is fused to a 20 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18480
Source
Escherichia Coli.
Appearance
Sterile filtered colorless solution.

GPX2 Human

Glutathione Peroxidase 2 Human Recombinant

GPX2 Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 210 amino acids (1-190) and having a molecular mass of 24.1kDa.
GPX2 is fused to a 20 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18535
Source
Escherichia Coli.
Appearance
Sterile filtered colorless solution.

GPX3 Human

Glutathione Peroxidase 3 Human Recombinant

GPX3 Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 227 amino acids (21-226) and having a molecular mass of 25.7kDa.
GPX3 is fused to a 21 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18592
Source
Escherichia Coli.
Appearance
Sterile filtered colorless solution.

GPX7 Human

Glutathione Peroxidase 7 Human Recombinant

GPX7 Human Recombinant produced in E.coli is a single, non-glycosylated polypeptide chain containing 193 amino acids (20-187) and having a molecular mass of 21.8kDa.
GPX7 is fused to a 25 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18637
Source
E.coli.
Appearance
Sterile Filtered colorless solution.

HAO1 Human

Hydroxyacid Oxidase 1 Human Recombinant

HAO1 Human Recombinant produced in E.Coli is a single, non-glycosylated polypeptide chain containing 406 amino acids (1-370 a.a.) and having a molecular mass of 45kDa.
HAO1 is fused to a 36 amino acid His-tag at N-terminus & purified by proprietary chromatographic techniques.
Shipped with Ice Packs
Cat. No.
BT18708
Source
Escherichia Coli.
Appearance
Sterile filtered colorless solution.
Definition and Classification

Oxidases are a class of enzymes that catalyze the transfer of electrons from a substrate to an oxygen molecule, producing water or hydrogen peroxide as a byproduct. They are a subset of the larger group of enzymes known as oxidoreductases. Oxidases can be classified based on their substrate specificity and the type of reaction they catalyze. Common types include cytochrome oxidases, monoamine oxidases, and xanthine oxidases.

Biological Properties

Key Biological Properties: Oxidases are crucial for various metabolic processes. They exhibit high substrate specificity and are often involved in redox reactions. Expression Patterns: The expression of oxidases varies widely among different tissues and cell types. For instance, cytochrome oxidase is predominantly found in the mitochondria of eukaryotic cells. Tissue Distribution: Oxidases are distributed across various tissues, with specific types localized in particular organs. For example, monoamine oxidase is primarily found in the nervous system and liver.

Biological Functions

Primary Biological Functions: Oxidases play a vital role in cellular respiration, detoxification, and metabolic pathways. They are involved in the breakdown of neurotransmitters and the metabolism of drugs. Role in Immune Responses: Oxidases, such as NADPH oxidase, are essential in the immune response, generating reactive oxygen species (ROS) to combat pathogens. Pathogen Recognition: Certain oxidases are involved in the recognition and neutralization of pathogens, contributing to the body’s defense mechanisms.

Modes of Action

Mechanisms with Other Molecules and Cells: Oxidases interact with various molecules, including substrates, cofactors, and other enzymes, to facilitate redox reactions. Binding Partners: They often require cofactors such as flavin adenine dinucleotide (FAD) or heme groups to function effectively. Downstream Signaling Cascades: The activity of oxidases can trigger downstream signaling pathways, influencing cellular responses such as apoptosis, proliferation, and differentiation.

Regulatory Mechanisms

Expression and Activity Control: The expression and activity of oxidases are tightly regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational modifications. Transcriptional Regulation: Specific transcription factors bind to promoter regions of oxidase genes, modulating their expression in response to cellular signals. Post-Translational Modifications: Oxidases undergo various post-translational modifications, such as phosphorylation and ubiquitination, which can alter their activity, stability, and localization.

Applications

Biomedical Research: Oxidases are extensively studied in biomedical research for their roles in disease mechanisms and potential therapeutic targets. Diagnostic Tools: Enzyme assays involving oxidases are used in diagnostic tests for conditions like diabetes (glucose oxidase) and liver function (xanthine oxidase). Therapeutic Strategies: Inhibitors of specific oxidases, such as monoamine oxidase inhibitors (MAOIs), are used in the treatment of psychiatric and neurological disorders.

Role in the Life Cycle

Development to Aging and Disease: Oxidases are involved in various stages of the life cycle, from development to aging. They play roles in cellular differentiation, growth, and apoptosis. Dysregulation of oxidase activity is associated with aging and diseases such as neurodegenerative disorders, cardiovascular diseases, and cancer.

© Copyright 2024 Thebiotek. All Rights Reserved.