T7 RNAP

T7 RNA Polymerase Recombinant
Cat. No.
BT3415
Source

T7 Bacteriophage RNA Polymerase gene

Synonyms

T7 RNAP.

Appearance
Sterile Filtered clear solution.
Purity

Greater than 95% as visualized by SDS-PAGE

Usage
THE BioTek's products are furnished for LABORATORY RESEARCH USE ONLY. The product may not be used as drugs, agricultural or pesticidal products, food additives or household chemicals.
Shipped with Ice Packs
In Stock

Description

T7 RNA polymerase Recombinant protein is produced by bacteriophage T7 DNA which is expressed in recombinant E. coli bacterial system

T7 RNA Polymerase is a DNA-dependent 5'→ 3' RNA polymerase which specifically recognizes T7 promoter sequences.

Product Specs

Introduction

The enzyme T7 RNA polymerase actively synthesizes RNA, exceeding the rate of E. coli RNA polymerase, and exhibits frequent transcription termination. Demonstrating high selectivity, it primarily initiates transcription at its specific promoter sequences and exhibits resistance to antibiotics that typically inhibit E. coli RNA polymerase. Leveraging its ability to generate full-length RNA transcripts with exceptional reliability, T7 RNA polymerase facilitates in vitro mRNA transcription. However, it's important to note that T7 RNAP can also produce immunostimulatory byproducts like dsRNA, potentially impacting protein expression.

Description

Recombinant T7 RNA polymerase is produced through the expression of bacteriophage T7 DNA within a recombinant E. coli bacterial system.

Functioning as a DNA-dependent 5'→ 3' RNA polymerase, T7 RNA Polymerase exhibits specific recognition of T7 promoter sequences.

Physical Appearance
A clear solution that has been sterilized through filtration.
Formulation

The transcription buffer is composed of 40mM Tris-HCl (pH 8.0 at 25°C), 20mM MgCl2, 2.5mM TCEP, and 2mM spermidine.

Stability

The product remains stable for two years when stored at -20°C, and for two weeks at 4°C. It is crucial to avoid storage at -70°C.

Unit Definition

One unit (1U) of enzyme activity is defined as the quantity necessary to incorporate 1 nanomole (nmol) of [3H]-labeled ATP into acid-insoluble precipitates over a period of 1 hour at a temperature of 37°C and a pH of 8.0.

Applications

This enzyme is utilized in the synthesis of various RNA molecules, including:

  • Single-stranded RNAs (ssRNAs)
  • Highly specific RNA probes, which can be either labeled or unlabeled
  • Capped mRNA molecules, synthesized using cap analogues
Purity

Analysis by SDS-PAGE reveals a purity greater than 95%.

Synonyms

T7 RNAP.

Source

T7 Bacteriophage RNA Polymerase gene

Product Science Overview

Introduction

T7 RNA Polymerase is a DNA-dependent RNA polymerase derived from the T7 bacteriophage, a virus that infects Escherichia coli (E. coli) bacterial cells. This enzyme is highly specific for the T7 promoter sequence, making it a powerful tool for in vitro transcription and recombinant protein production.

Discovery and Development

The T7 RNA Polymerase system was developed in the 1980s at the U.S. Department of Energy’s Brookhaven National Laboratory. The sequencing and annotation of the T7 bacteriophage genome enabled scientists to clone the T7 RNA polymerase gene and use it for transcription of various genes . This system has since become one of the most successful biotechnologies, licensed by over 900 companies and generating significant revenue for the laboratory .

Mechanism of Action

The T7 RNA Polymerase system operates by integrating a T7 promoter and a gene of interest into an expression vector, which is then transformed into E. coli cells. The E. coli cells contain a gene that produces T7 RNA polymerase under the control of a lac promoter. Normally, both the lac promoter and the T7 promoter are repressed by the Lac repressor. To initiate transcription, an inducer such as IPTG is added to bind to the Lac repressor, allowing the T7 RNA polymerase to be produced and bind to the T7 promoter on the expression vector, thereby transcribing the gene of interest .

Applications

T7 RNA Polymerase is widely used for generating specific RNA transcripts in vitro from DNA containing the T7 promoter sequence. These RNA transcripts are used in various applications, including:

  • Hybridization probes for DNA and RNA blots
  • Ribonuclease protection assays
  • Studying post-transcriptional modifications such as RNA splicing and polyadenylation
  • In vitro translation for protein synthesis
Advantages

The T7 RNA Polymerase system offers several advantages:

  • High specificity for the T7 promoter sequence
  • Rapid transcription rates, up to eight times faster than E. coli RNA polymerase
  • Increased sensitivity of RNA probes compared to DNA probes, as RNA probes are single-stranded and do not have complementary labeled strands that compete during hybridization
Challenges

One of the challenges associated with the T7 RNA Polymerase system is “leaky” expression, where the recombinant protein is expressed even in the absence of an inducer. This can be problematic when the recombinant protein is toxic to the host cell. To mitigate this, vectors often include lac operator sequences downstream of the promoter to reduce leaky expression .

Quick Inquiry

Personal Email Detected
Please use an institutional or corporate email address for inquiries. Personal email accounts ( such as Gmail, Yahoo, and Outlook) are not accepted. *
© Copyright 2024 Thebiotek. All Rights Reserved.